Home
Worm composting Renewable Energy Non-conv. Energy Vacuum Energy Theory Calculations Design ideasVoltage calcs. Testatika correl. Exp.1-Pre. mag.(090202) Exp.2-Chg. test (100514) Testatika Hyde generator EV Gray tube Hans Coler's devices Roy Meyers device Can stirling SMOT mark 1 Water Wheel Mag. Motor Materials Books Videos Non-conv. Propulsion Food Equipment Materials Stories Blog |
The calculations on this page are no longer valid. They sum the
amplitudes of the waves when they should have been summing the
## How many electrons in a circle does it take to create an electron at the center?In the model used here, electrons are spherical wave structures. Since an electron is made up of only waves, it takes only waves to make one. On the vacuum energy to electrical energy conversion theory page, it was shown how this might be done. Assuming we formed a circle of electrons as in the diagram below, how many electrons would have to be on the circumference of that circle to have the total amplitude of all waves at the center of the circle equal the amplitude at the center of an electron? The following diagram doesn`t contain the answer but illustrates the idea.
I next modified the program for the above animation to capture the maximum values for the amplitudes for one side of the scalar/standing wave. The following chart was produced from those captured values.
To get finer and finer values for the maximum amplitudes I took radius
values from either side of the captured maximum amplitudes and plugged
them back into the program as endpoints for new sets of captures, thus
zeroing in closer to the actual locations of the maximum amplitudes.
Three iterations of this resulted in data with accuracy I felt good about,
the following of which is a sample taken from that data. Note that
since I don't know what value
to use for
The first two columns are the captured data,
The
The fourth column, The last column was an unexpected result. If you take the number of required electrons, 64.39 for the first line, and reduce the radius of the circle by a half-wavelength i.e. the second line, then you need pi less electrons, 61.25. So you need pi extra electrons for each half wavelength bigger that you make the radius of the circle. So the final formula is:
The reason for multiplying by 2 is because the distance between two adjacent peaks is actually a half wavelength. The peak number is found by dividing the radius at the peak by Compton's wavelength and is how many peaks away a given peak is from the center of the electron. So in more broken down form it is:
And here is a table of values obtained using the above formula. Comparison with the above table containing values obtained from raw data leaves no doubt that the formula is correct.
| ||||||||||||